On Tolerant Fuzzy c-Means Clustering with L1-Regularization
نویسندگان
چکیده
We have proposed tolerant fuzzy c-means clustering (TFCM) from the viewpoint of handling data more flexibly. This paper presents a new type of tolerant fuzzy c-means clustering with L1-regularization. L1-regularization is wellknown as the most successful techniques to induce sparseness. The proposed algorithm is different from the viewpoint of the sparseness for tolerance vector. In the original concept of tolerance, a tolerance vector attributes to each data. This paper develops the concept to handle data flexibly, that is, a tolerance vector attributes not only to each data but also each cluster. First, the new concept of tolerance is introduced into optimization problems. These optimization problems are based on conventional fuzzy c-means clustering (FCM). Second, the optimization problems with tolerance are solved by using Karush-Kuhn-Tucker conditions and an optimization method for L1-regularization. Third, new clustering algorithms are constructed based on the explicit optimal solutions. Finally, the effectiveness of the proposed algorithm is verified through some numerical examples. Keywords— fuzzy c-means clustering, L1-regularization, optimization, tolerance, uncertainty
منابع مشابه
OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملAn overview and new methods in fuzzy clustering
Principal methods in nonhierarchical and hierarchical fuzzy clustering are overviewed. In particular, the method of fuzzy c-means is focused upon and recent algorithms in fuzzy c-means are described. It is shown that the concept of regularization plays an important role in the fuzzy c-means. Classification functions induced from fuzzy clustering are discussed and variations of the standard fuzz...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009